英国曼彻斯特大学的研究人员安德烈·盖姆和科斯提亚·诺沃谢夫最早发现,当石墨层薄到只有一个碳原子厚度时,其韧度和电特性都很突出。这一发现在科学界引起不小的轰动,不仅因为它打破了二维晶体无法真实存在的理论预言,更重要的是,石墨烯众多特性可能会改变我们的生活。安德烈·盖姆和科斯提亚·诺沃谢夫也因为在石墨烯领域的突出贡献获得诺贝尔奖。
“土办法”制出新材料
科学家近日公开了一份赋予用户“超强视觉”的隐形眼镜制造计划,来自美国密歇根大学的研究团队说,这种隐形眼镜内嵌入石墨烯,感光功能极佳,能够侦测到可见光与不可见光,如红外线一般,具有夜视功能。这一消息使石墨烯再次罩上神奇光环。
第一片单层的石墨烯的诞生并无多少“技术含量”。安德烈·盖姆用透明胶带在石墨上粘一下,这样就会有石墨层被粘在胶带上。然后把胶带对折后,粘一下再拉开,这样,胶带两端都有石墨层,石墨层又变薄了。如此反复,胶带上的石墨层薄到只有一个碳原子的厚度时,石墨层也就变成了石墨烯。
科学家们在定义石墨烯的时候显得有些为难。中科院半导体研究所研究员谭平恒告诉记者,盖姆教授在2007年发表的石墨烯论文综述中,对到底具有多少层碳原子的二维晶体结构才能称为石墨烯进行了明确的界定:“单层、双层、多层(3层至10层)材料由于仍然保持二维晶体特性,可称为石墨烯。”
中国石墨烯产业技术创新战略联盟2013年就石墨烯材料的定义给出标准,认为石墨烯是该标准定义的单层石墨烯、双层石墨烯和少层石墨烯(3层至10层)的统称。谭平恒认为,如何鉴别广义石墨烯层数是目前石墨烯研究和产业化发展亟需解决的问题。
尽管“名”还不正,但各国已表现出足够热情。2013年1月,欧盟将石墨烯列为“未来新兴技术旗舰项目”之一,计划10年提供10亿欧元资助;英国在2012年底宣布将追加投资2150万英镑资助石墨烯商业化进程,并建立一个国家级研究机构;美国、韩国、日本则分别在石墨烯制造电脑芯片和晶体管领域、柔性触摸屏和柔性有机电致发光器件领域、透明导电膜和散热膜领域走在世界前列。
据不完全统计,当前世界上做石墨烯规模制备的公司有50多家,其中我国就有十几家,不少研究成果已居世界前沿。
挑战各种“不可能”
凭借其特殊的物理结构和特质,石墨烯可以在多个领域带来颠覆性的变革。
如果将其成功用于超级电容器或锂离子电池的电极材料,套用当下比较流行的话,“妈妈再也不用担心我的电池了”。据中国科学院山西煤炭化学研究所陈成猛博士介绍,储能材料有两个关键指标,一是导电性,石墨烯是目前世界上电阻率最小的材料,电子在石墨烯二维平面上自由迁移,就好比汽车开上高速公路一般畅通无阻;二是比表面积,这直接影响储能材料的比容量,也就是电池的续航能力。所有组成石墨烯的碳原子都在表面,对于储能都是有效的,一点都不浪费。“只用5分钟手机就可以完成充电,而且可以用3天甚至更长。”陈成猛介绍说,这一应用可能会为电动车动力电池开启新的窗口,在节能环保方面有望突破。
手机、电脑等电子产品用久了会发热,这是因为持续的工作产生的热量无法通过散热片及时与外界交换。随着高功率电子产品的更新换代,对散热的要求越来越高,而这恰恰是石墨烯的机会。
据陈成猛提供的资料,室温下石墨烯的理论导热系数高达5300瓦/米·开尔文,美国在实验室已测到单片石墨烯热导率超过4000瓦/米·开尔文,这超越了碳纳米管、金刚石和高定向石墨,并远远高于导热性能最好的金属铜达一个数量级。“但这些性能都是基于一个非常微观的纳米尺度,看不见、摸不着,真正应用于实际就比较困难。”陈成猛说,依据石墨烯高导热的性能,他们研究所已成功将石墨烯和碳纤维复合成新的薄膜,导热率能超过1100瓦/米·开尔文。
锂电池产业链企业推广,锂电网(li-b.cn)欢迎投稿。