从商业格局上讲,无人机锂电池智能化,是一个不错的发展方向和存在形式。反过来讲,这种形式也令商业模式更具有赢利潜能。在我们身边,智能锂电池已随处可见,笔记本电脑、手机,以及众多移动设备,均已采用了智能锂电池。无人机的动力锂电池,也正在向智能锂电池过渡。不过本文,不讲这个发展趋势,我们要讲无人机智能锂电池给用户带来的喜与悲。
是的,你没看错,“悲”——在一个能令企业获得巨大赢利潜能的模式下,用户要为高昂的制造成本买单,同时还要承担的更多其他隐形成本,例如由于产能不足带来的等候时间。为了讲清楚这个问题,笔者先来和大家分享一下“电池”与“智能”是如何沟兑到一块儿的。
一、普通电池是如何智能起来的
电池,大家并不陌生,不管是普通的五号圆柱形电池,还是汽车蓄电池,以及锂电池,不管是采用什么技术、什么材质制造的电池,它的实质仅仅是一个电能的存储介质。电能通过电池的两极来与负载(用电设备)进行能量交换(使用电设备做功)——接上灯泡,它就亮了;接上电机,它就转了;接上收音机,它就响了。一次性电池没电了,设备就需要换上新电池;可充电电池没电了,充好电可继续使用。根据应用的需要,通过串联获得符合要求的工作电压,通过并联获得符合要求的电池容量。
是的,就是这么简单。这就是笔者要揭示给你的有关电池应用的原生形态!然而,当应用条件日趋复杂化后,这种简单的电池供电形式就不再那么令人感到满意了!可以让电池工作得更靠谱一些吗?
1.解决过放电问题催生智能电池
对于非一次性电池,也就是可充电电池,过放电是最令人懊恼的事。过放意味着电池性能的下降,甚至报废。为了避免过放电,人们在电池组里增加了过放电保护电路,当放电电压降到预设电压值时,电池停止向外供电。然而实际的情况还要更复杂一些,比如笔记本电脑、无人机、电动汽车,如果因避免电池过放电而立即停止供电,那么电脑就会立即关机,很多数据来不及保存;无人机,就会从天上直接掉下来;电动汽车就会在毫无征兆的情况下抛锚。因此,智能电池的放电截止只是电池自我保护的最后一道防线,在此之前,管理电路还要计算出末端续航时间,来为用户提供预警,以便用户有足够的时间来采取相应的安全措施。
对于续航时间的计算,在小电流设备上处理起来要简单得多,例如:笔电本电脑、手机等。但是对于像无人机、电动汽车等,这类工作电流大,电流变化大,工况复杂的系统来说,需要动态计算续航时间,那情况就变得复杂得多了。
以大疆精灵3为例,它采用的智能锂电池在与飞控数据融合后可实现三级电压预警保护措施。
第一级:当检测到电量剩余30%时,开始报警,提示用户应该注意剩余电量,提前做好返航准备;
第二级:当检测到剩余电量仅够维持返航时,开始自动执行返航;而这个时间点的把握,与飞行距离、高度有关,是智能电池数据与无人机飞控数据融合后实时计算出来的。
第三级:当检测到剩余电量都不足以维持正常返航时(例如返航途中遇到逆风,则有可能超出预估的返航时间),则执行原地降落,以最大限度避无人机因缺电导致坠毁。
续航时间的计算结果与飞行距离、飞行高度、当前电机输出功率等因素有关。笔者提醒各位看官,这些因素都是动态变化的,而且变化幅度有可能很大,所有数据都需要实时计算,这对于智能锂电池管理芯片、算法设计都会提出极高的要求。
2.解决充电和保存问题催生智能电池
目前锂电池已经大行其道。众所周知,锂电池充电,是有特殊要求的。如果读者感兴趣,可以查阅相关资料,这里不再赘述,当然这只是其一。其二是,目前大量锂电池组采用了多电芯串并形式,由于电芯个体差异,导致充电和放电不可能做到100%均衡,因此一套完善的充电管理电路就显得尤为必要了。而这,就是智能锂电池要具备的第二项功能——对锂电池组进行完善的充电管理,以及放电管理。
以大疆精灵3的智能锂电池为例。
功能之一:该智能锂电池实际上已内置了一个锂电池的专用充电管理电路,并且能够对电芯单体进行电压均衡管理。故而,对于充电器(电源适配器)的要求就并不那么高了,只要提供合适的充电电压和充电电流,就能够对该智能锂电池进行充电。因此精灵3所搭配的所谓充电器,其实质只是一个电源适配器,真正的充电管理电路在电池里面。